
Final Presentation:

„A Dashboard for Evolving Variability in Configurable System Software“

Lukas Petermann, 13.09.2025



Lukas Petermann

1 Introduction
• Software systems evolve constantly

‣ Configurability is often expected or required

• Especially interesting: System software
‣ Safety and security: System software is the connecting link

between hardware and software
‣ Flexibility: Virtually countless combinations of hardware

and software → Variability

• System software is often developed in product lines (SPL)
‣ Related products that share the same core but otherwise differ in functionality
‣ Effective and systematic development, variability management

Fig. 1: #Configurations of the Linux kernel [1]

Introduction Concept Implementation & Demo Conclusion 2



Lukas Petermann

• This variability of SPLs can be modeled via feature models
‣ Describe valid configurations of an SPL by modeling features and dependencies

• System software variability is often described in DSLs like KConfig
‣ No direct mapping between KConfig and SPL feature model
‣ But: features can be extracted and analyzed automatically

Fig. 2: Example feature model for a vending machine product line [2]
Introduction
→ Feature Models

Concept Implementation & Demo Conclusion 3



Lukas Petermann

• This variability of SPLs can be modeled via feature models
‣ Describe valid configurations of an SPL by modeling features and dependencies

• System software variability is often described in DSLs like KConfig
‣ No direct mapping between KConfig and SPL feature model
‣ But: features can be extracted and analyzed automatically

Fig. 3: Excerpt of the bluetooth driver KConfig
Introduction
→ Feature Models

Concept Implementation & Demo Conclusion 4



Lukas Petermann

• Automated system software product line analysis

‣ Feature model analysis → Analysis of configuration space, i.e., feature model semantics

‣ Feature model evolution → Analysis of configuration history, i.e., feature model evolution over time

• Evolution is especially interesting:

‣ Iterative development, open source → Development history is available

‣ Usage in various settings → All revisions are interesting, not just the most recent

• Papers have been published with static tables and figures [1],[3],[4],[5]

• Tools like Torte¹ can automatically extract and analyze features

If only there was a way to better communicate these experiment results…

¹https://github.com/ekuiter/torte

Introduction
→ Automated Analysis

Concept Implementation & Demo Conclusion 5

https://github.com/ekuiter/torte


Lukas Petermann

Fig. 4: Torte dashboard concept

2 Torte Dashboard
• Goal: Visualization of current state & historical evolution

‣ Choice of system software project and metric
‣ Interactive plot illustrates growth over time and per revision

• Vision: Support for researchers:
‣ Interactive plots add additional information (to static tables)
‣ Reference dashboard from publication for more information
‣ Room for more plots than in publication due to page limit
‣ Other researchers can create their own dashboards
‣ Easily extendable with new projects and metrics

Introduction Concept Implementation & Demo Conclusion 6



Lukas Petermann

2.1 Projects & Metrics
„what you dont measure, you cannot control“

• All metrics relate different projects in terms of size, complexity and variability

• Quantitative metrics give insight on system complexity
‣ Lines of code, #Features, #Configurations

• Computation times hint at necessary effort of analysis
‣ For instance, the Linux kernel has grown too complex to analyze

• Differentiate between Linux and non-Linux projects

Fig. 5: #Configurations of the Linux kernel [1]
Introduction Concept

→ Projects & Metrics
Implementation & Demo Conclusion 7



Lukas Petermann

3 Implementation
• Initial Setup

‣ ExpressJS + Astro

• Second Setup
‣ Flask + Svelte

• Third Setup
‣ Serverless, static, and

vanilla HTML

Introduction Concept Implementation & Demo
→ Tech Stack I

Conclusion 8



Lukas Petermann

3 Implementation
• Initial Setup

‣ ExpressJS + Astro

• Second Setup
‣ Flask + Svelte

• Third Setup
‣ Serverless, static, and

vanilla HTML

Introduction Concept Implementation & Demo
→ Tech Stack II

Conclusion 9



Lukas Petermann

3 Implementation
• Initial Setup

‣ ExpressJS + Astro
• Second Setup

‣ Flask + Svelte

• Third Setup
‣ Serverless, static, and

vanilla HTML

Introduction Concept Implementation & Demo
→ Tech Stack III

Conclusion 10



Lukas Petermann

3 Implementation
• Initial Setup

‣ ExpressJS + Astro
• Second Setup

‣ Flask + Svelte

• Third Setup
‣ Serverless, static, and

vanilla HTML

Introduction Concept Implementation & Demo
→ Tech Stack III

Conclusion 11



Lukas Petermann

Final Iteration → Demo!
https://lupeterm.github.io (also kind of works on mobile!)

Introduction Concept Implementation & Demo
→ Final Tech Stack

Conclusion 12

https://lupeterm.github.io


Lukas Petermann

3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 10: Dashboard Extension Workflow

Introduction Concept Implementation & Demo
→ Workflow

Conclusion 13



Lukas Petermann

3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 11: Dashboard Extension Workflow

Introduction Concept Implementation & Demo
→ Workflow

Conclusion 14



Lukas Petermann

3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community
Fig. 12: Dashboard Extension Workflow

Introduction Concept Implementation & Demo
→ Workflow

Conclusion 15



Lukas Petermann

3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 13: Dashboard Extension Workflow

Introduction Concept Implementation & Demo
→ Workflow

Conclusion 16



Lukas Petermann

3.1.3 Metric Generation from Config

Fig. 14: Entry in gen_init.json

⟶

Fig. 15: Generated values in init.json

Introduction Concept Implementation & Demo
→ Workflow

Conclusion 17



Lukas Petermann

3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 16: Dashboard Extension Workflow

Introduction Concept Implementation & Demo
→ Workflow

Conclusion 18



Lukas Petermann

3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 17: Dashboard Extension Workflow

Introduction Concept Implementation & Demo
→ Workflow

Conclusion 19



Introduction Concept Implementation & Demo Conclusion 20



Lukas Petermann

4 Conclusion

Stakeholder Benefit of a Scientific Dashboard

Scientists + Quick insight on metric evolution and current state
+ Easy Comparison between projects and extractors
+ Supplementary to publications

Maintainer + Same benefits as above!
+ Automatic extraction of data & figure generation

Developer + Valuable lessons learned

Thanks for listening!

Introduction Concept Implementation & Demo Conclusion 21



Lukas Petermann

References
[1] E. Kuiter, C. Sundermann, T. Thüm, T. Hess, S. Krieter, und G. Saake, „How Configurable is the Linux

Kernel? Analyzing Two Decades of Feature-Model History“, ACM Trans. Softw. Eng. Methodol., Apr. 2025,
doi: 10.1145/3729423.

[2] A. Sree-Kumar, E. Planas, und R. Clarisó, „Analysis of Feature Models Using Alloy: A Survey“, Electronic
Proceedings in Theoretical Computer Science, Bd. 206, S. 46–60, 2016, doi: 10.4204/EPTCS.206.5.

[3] T. Thum, C. Kastner, S. Erdweg, und N. Siegmund, „Abstract Features in Feature Modeling“, in 2011 15th
International Software Product Line Conference, Aug. 2011, S. 191–200. doi: 10.1109/SPLC.2011.53.

[4] M. Nieke, J. Mauro, C. Seidl, T. Thüm, I. C. Yu, und F. Franzke, „Anomaly analyses for feature-model
evolution“, ACM SIGPLAN Notices, Bd. 53, Nr. 9, S. 188–201, Apr. 2020, doi: 10.1145/3393934.3278123.

[5] „Evolution of the Linux Kernel Variability Model“, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Berlin, Heidelberg, S. 136–150, 2010. doi: 10.1007/978-3-642-15579-6_10.

Introduction Concept Implementation & Demo Conclusion 22

https://doi.org/10.1145/3729423
https://doi.org/10.4204/EPTCS.206.5
https://doi.org/10.1109/SPLC.2011.53
https://doi.org/10.1145/3393934.3278123
https://doi.org/10.1007/978-3-642-15579-6_10

	Final Presentation:
	
	"A Dashboard for Evolving Variability in Configurable System Software"
	1 Introduction
	2 Torte Dashboard
	2.1 Projects & Metrics
	3 Implementation
	3 Implementation
	3 Implementation
	3 Implementation
	Final Iteration → Demo!
	3.1 Workflow of Integrating New Data
	3.1 Workflow of Integrating New Data
	3.1 Workflow of Integrating New Data
	3.1 Workflow of Integrating New Data
	3.1.3 Metric Generation from Config
	3.1 Workflow of Integrating New Data
	3.1 Workflow of Integrating New Data
	4 Conclusion
	References

