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1 Introduction
• Software systems evolve constantly

‣ Configurability is often expected or required

• Especially interesting: System software
‣ Safety and security: System software is the connecting link

between hardware and software
‣ Flexibility: Virtually countless combinations of hardware

and software → Variability

• System software is often developed in product lines (SPL)
‣ Related products that share the same core but otherwise differ in functionality
‣ Effective and systematic development, variability management

Fig. 1: #Configurations of the Linux kernel [1]
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• This variability of SPLs can be modeled via feature models
‣ Describe valid configurations of an SPL by modeling features and dependencies

• System software variability is often described in DSLs like KConfig
‣ No direct mapping between KConfig and SPL feature model
‣ But: features can be extracted and analyzed automatically

Fig. 2: Example feature model for a vending machine product line [2]
Introduction
→ Feature Models
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• This variability of SPLs can be modeled via feature models
‣ Describe valid configurations of an SPL by modeling features and dependencies

• System software variability is often described in DSLs like KConfig
‣ No direct mapping between KConfig and SPL feature model
‣ But: features can be extracted and analyzed automatically

Fig. 3: Excerpt of the bluetooth driver KConfig
Introduction
→ Feature Models
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• Automated system software product line analysis

‣ Feature model analysis → Analysis of configuration space, i.e., feature model semantics

‣ Feature model evolution → Analysis of configuration history, i.e., feature model evolution over time

• Evolution is especially interesting:

‣ Iterative development, open source → Development history is available

‣ Usage in various settings → All revisions are interesting, not just the most recent

• Papers have been published with static tables and figures [1],[3],[4],[5]

• Tools like Torte¹ can automatically extract and analyze features

If only there was a way to better communicate these experiment results…

¹https://github.com/ekuiter/torte

Introduction
→ Automated Analysis
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Fig. 4: Torte dashboard concept

2 Torte Dashboard
• Goal: Visualization of current state & historical evolution

‣ Choice of system software project and metric
‣ Interactive plot illustrates growth over time and per revision

• Vision: Support for researchers:
‣ Interactive plots add additional information (to static tables)
‣ Reference dashboard from publication for more information
‣ Room for more plots than in publication due to page limit
‣ Other researchers can create their own dashboards
‣ Easily extendable with new projects and metrics
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2.1 Projects & Metrics
„what you dont measure, you cannot control“

• All metrics relate different projects in terms of size, complexity and variability

• Quantitative metrics give insight on system complexity
‣ Lines of code, #Features, #Configurations

• Computation times hint at necessary effort of analysis
‣ For instance, the Linux kernel has grown too complex to analyze

• Differentiate between Linux and non-Linux projects

Fig. 5: #Configurations of the Linux kernel [1]
Introduction Concept

→ Projects & Metrics
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3 Implementation
• Initial Setup

‣ ExpressJS + Astro

• Second Setup
‣ Flask + Svelte

• Third Setup
‣ Serverless, static, and

vanilla HTML

Introduction Concept Implementation & Demo
→ Tech Stack I
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Final Iteration → Demo!
https://lupeterm.github.io (also kind of works on mobile!)

Introduction Concept Implementation & Demo
→ Final Tech Stack
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3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 10: Dashboard Extension Workflow
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3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 11: Dashboard Extension Workflow
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3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community
Fig. 12: Dashboard Extension Workflow
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3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 13: Dashboard Extension Workflow
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3.1.3 Metric Generation from Config

Fig. 14: Entry in gen_init.json

⟶

Fig. 15: Generated values in init.json
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3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 16: Dashboard Extension Workflow
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3.1 Workflow of Integrating New Data
1. Scientist generates new experiment results with Torte

2. Scientist modifies gen_init.json

3. The script autogenerates all figures and metrics
• New Figures are saved directly into the frontend sources folder
• New Metrics are merged into the pre-existing init.json

4. Run local development server
1. Review the generated metrics and plots
2. Repeat from 2., if necessary (e.g. incorrect gen_init.json)

5. Publish updated dashboard

→ Share results with the scientific community

Fig. 17: Dashboard Extension Workflow
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4 Conclusion

Stakeholder Benefit of a Scientific Dashboard

Scientists + Quick insight on metric evolution and current state
+ Easy Comparison between projects and extractors
+ Supplementary to publications

Maintainer + Same benefits as above!
+ Automatic extraction of data & figure generation

Developer + Valuable lessons learned

Thanks for listening!
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